U
    +if                     @  s  d dl mZ d dlZd dlmZ d dlmZ d dlmZ d dl	Z	d dl
Zd dlmZ d dlm  m  mZ d dlmZmZ erd dlmZmZ d d	lmZ d d
lmZ d dlmZ d dl m!Z! d dl"m#Z# d dl$m%Z% d dl&m'  m(Z( d dl)m*Z*m+Z+m,Z, d dl-m.Z. d dl/m0Z0 d dl1m2Z2m3Z3m4Z4m5Z5m6Z6m7Z7m8Z8m9Z9m:Z: d dl;m<Z<m=Z= d dl>m?Z?m@Z@ d dlAmBZBmCZC ddddddddZDdddddd ZEG d!d" d"eBZFG d#d$ d$eCeFZGG d%d& d&eFZHdS )'    )annotationsN)partial)dedent)TYPE_CHECKING)	Timedelta)AxisTimedeltaConvertibleTypes)	DataFrameSeries)NDFrame)function)doc)find_stack_level)is_datetime64_ns_dtype)isna)BaseIndexerExponentialMovingWindowIndexerGroupbyIndexer)maybe_use_numba)zsqrt)	_shared_docsargs_compatcreate_section_headerkwargs_compatnumba_notestemplate_headertemplate_returnstemplate_see_alsowindow_agg_numba_parameters)generate_numba_ewm_funcgenerate_numba_ewm_table_func)EWMMeanStategenerate_online_numba_ewma_func)
BaseWindowBaseWindowGroupbyfloat | Nonefloat)comassspanhalflifealphareturnc                 C  s   t | |||}|dkr td| d k	r:| dk rtdn|d k	r`|dk rRtd|d d } nt|d k	r|dkrxtddttd|  }d| d } n6|d k	r|dks|dkrtd	d| | } ntd
t| S )N   z8comass, span, halflife, and alpha are mutually exclusiver   z comass must satisfy: comass >= 0zspan must satisfy: span >= 1   z#halflife must satisfy: halflife > 0g      ?z"alpha must satisfy: 0 < alpha <= 1z1Must pass one of comass, span, halflife, or alpha)commoncount_not_none
ValueErrornpexplogr&   )r'   r(   r)   r*   Zvalid_countZdecay r4   I/home/mars/bis/venv/lib/python3.8/site-packages/pandas/core/window/ewm.pyget_center_of_mass>   s*    
r6   !str | np.ndarray | NDFrame | None(float | TimedeltaConvertibleTypes | None
np.ndarray)timesr)   r+   c                 C  s4   t j| t jt jd}tt|j}t || S )a  
    Return the diff of the times divided by the half-life. These values are used in
    the calculation of the ewm mean.

    Parameters
    ----------
    times : str, np.ndarray, Series, default None
        Times corresponding to the observations. Must be monotonically increasing
        and ``datetime64[ns]`` dtype.
    halflife : float, str, timedelta, optional
        Half-life specifying the decay

    Returns
    -------
    np.ndarray
        Diff of the times divided by the half-life
    Zdtype)	r1   ZasarrayviewZint64float64r&   r   valuediff)r:   r)   Z_timesZ	_halflifer4   r4   r5   _calculate_deltas_   s    
 r@   c                      s  e Zd ZdZdddddddd	d
dg
Zd^dddddddddddddd fddZddddd d!d"Zd#d$d%d&Zd_d(d)Ze	e
d* ed+ed,d-d.d/ fd0d1ZeZe	eed2ee eed3eed4eed5ed6d.d7d8d9d:d;ddd<d=d>Ze	eed2ee eed3eed4eed5ed6d.d7d8d?d@d;ddd<dAdBZe	eed2edCd6d.d7eeed3eed4eddD d8dEdFd;d`ddGdHdIZdaddGdJdKZe	eed2edCd6d.d7eeed3eed4eddD d8dLdMd;dbddGdNdOZe	eed2edPd6d.d7eed3eed4eddD d8dQdRd;dcdSdTddUdVdWZe	eed2edXd6d.d7eed3eed4eddD d8dYdZd;dddSdTd[d\d]Z  ZS )eExponentialMovingWindowa  
    Provide exponentially weighted (EW) calculations.

    Exactly one parameter: ``com``, ``span``, ``halflife``, or ``alpha`` must be
    provided.

    Parameters
    ----------
    com : float, optional
        Specify decay in terms of center of mass

        :math:`\alpha = 1 / (1 + com)`, for :math:`com \geq 0`.

    span : float, optional
        Specify decay in terms of span

        :math:`\alpha = 2 / (span + 1)`, for :math:`span \geq 1`.

    halflife : float, str, timedelta, optional
        Specify decay in terms of half-life

        :math:`\alpha = 1 - \exp\left(-\ln(2) / halflife\right)`, for
        :math:`halflife > 0`.

        If ``times`` is specified, the time unit (str or timedelta) over which an
        observation decays to half its value. Only applicable to ``mean()``,
        and halflife value will not apply to the other functions.

        .. versionadded:: 1.1.0

    alpha : float, optional
        Specify smoothing factor :math:`\alpha` directly

        :math:`0 < \alpha \leq 1`.

    min_periods : int, default 0
        Minimum number of observations in window required to have a value;
        otherwise, result is ``np.nan``.

    adjust : bool, default True
        Divide by decaying adjustment factor in beginning periods to account
        for imbalance in relative weightings (viewing EWMA as a moving average).

        - When ``adjust=True`` (default), the EW function is calculated using weights
          :math:`w_i = (1 - \alpha)^i`. For example, the EW moving average of the series
          [:math:`x_0, x_1, ..., x_t`] would be:

        .. math::
            y_t = \frac{x_t + (1 - \alpha)x_{t-1} + (1 - \alpha)^2 x_{t-2} + ... + (1 -
            \alpha)^t x_0}{1 + (1 - \alpha) + (1 - \alpha)^2 + ... + (1 - \alpha)^t}

        - When ``adjust=False``, the exponentially weighted function is calculated
          recursively:

        .. math::
            \begin{split}
                y_0 &= x_0\\
                y_t &= (1 - \alpha) y_{t-1} + \alpha x_t,
            \end{split}
    ignore_na : bool, default False
        Ignore missing values when calculating weights.

        - When ``ignore_na=False`` (default), weights are based on absolute positions.
          For example, the weights of :math:`x_0` and :math:`x_2` used in calculating
          the final weighted average of [:math:`x_0`, None, :math:`x_2`] are
          :math:`(1-\alpha)^2` and :math:`1` if ``adjust=True``, and
          :math:`(1-\alpha)^2` and :math:`\alpha` if ``adjust=False``.

        - When ``ignore_na=True``, weights are based
          on relative positions. For example, the weights of :math:`x_0` and :math:`x_2`
          used in calculating the final weighted average of
          [:math:`x_0`, None, :math:`x_2`] are :math:`1-\alpha` and :math:`1` if
          ``adjust=True``, and :math:`1-\alpha` and :math:`\alpha` if ``adjust=False``.

    axis : {0, 1}, default 0
        If ``0`` or ``'index'``, calculate across the rows.

        If ``1`` or ``'columns'``, calculate across the columns.

    times : str, np.ndarray, Series, default None

        .. versionadded:: 1.1.0

        Only applicable to ``mean()``.

        Times corresponding to the observations. Must be monotonically increasing and
        ``datetime64[ns]`` dtype.

        If 1-D array like, a sequence with the same shape as the observations.

        .. deprecated:: 1.4.0
            If str, the name of the column in the DataFrame representing the times.

    method : str {'single', 'table'}, default 'single'
        .. versionadded:: 1.4.0

        Execute the rolling operation per single column or row (``'single'``)
        or over the entire object (``'table'``).

        This argument is only implemented when specifying ``engine='numba'``
        in the method call.

        Only applicable to ``mean()``

    Returns
    -------
    ``ExponentialMovingWindow`` subclass

    See Also
    --------
    rolling : Provides rolling window calculations.
    expanding : Provides expanding transformations.

    Notes
    -----
    See :ref:`Windowing Operations <window.exponentially_weighted>`
    for further usage details and examples.

    Examples
    --------
    >>> df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]})
    >>> df
         B
    0  0.0
    1  1.0
    2  2.0
    3  NaN
    4  4.0

    >>> df.ewm(com=0.5).mean()
              B
    0  0.000000
    1  0.750000
    2  1.615385
    3  1.615385
    4  3.670213
    >>> df.ewm(alpha=2 / 3).mean()
              B
    0  0.000000
    1  0.750000
    2  1.615385
    3  1.615385
    4  3.670213

    **adjust**

    >>> df.ewm(com=0.5, adjust=True).mean()
              B
    0  0.000000
    1  0.750000
    2  1.615385
    3  1.615385
    4  3.670213
    >>> df.ewm(com=0.5, adjust=False).mean()
              B
    0  0.000000
    1  0.666667
    2  1.555556
    3  1.555556
    4  3.650794

    **ignore_na**

    >>> df.ewm(com=0.5, ignore_na=True).mean()
              B
    0  0.000000
    1  0.750000
    2  1.615385
    3  1.615385
    4  3.225000
    >>> df.ewm(com=0.5, ignore_na=False).mean()
              B
    0  0.000000
    1  0.750000
    2  1.615385
    3  1.615385
    4  3.670213

    **times**

    Exponentially weighted mean with weights calculated with a timedelta ``halflife``
    relative to ``times``.

    >>> times = ['2020-01-01', '2020-01-03', '2020-01-10', '2020-01-15', '2020-01-17']
    >>> df.ewm(halflife='4 days', times=pd.DatetimeIndex(times)).mean()
              B
    0  0.000000
    1  0.585786
    2  1.523889
    3  1.523889
    4  3.233686
    comr(   r)   r*   min_periodsadjust	ignore_naaxisr:   methodNr   TFsingle	selectionr   r%   r8   
int | Noneboolr   r7   str)objrB   r(   r)   r*   rC   rD   rE   rF   r:   rG   c             
     s  t  j||d krdntt|dd dd ||	|d || _|| _|| _|| _|| _|| _	|
| _
| j
d k	rH| jsvtdt| j
trtjdtt d | j| j
 | _
t| j
stdt| j
t|krtdt| jttjfstd	t| j
 rtd
t| j
| j| _t| j| j| jdkr@t| j| jd | j| _nd| _nb| jd k	rpt| jttjfrptdt j!tt| j"d dt j#d| _t| j| j| j| j| _d S )Nr,   F)rN   rC   oncenterclosedrG   rF   rJ   z)times is not supported with adjust=False.zSpecifying times as a string column label is deprecated and will be removed in a future version. Pass the column into times instead.
stacklevelz#times must be datetime64[ns] dtype.z,times must be the same length as the object.z6halflife must be a string or datetime.timedelta objectz$Cannot convert NaT values to integerr   g      ?zKhalflife can only be a timedelta convertible argument if times is not None.r;   )$super__init__maxintrB   r(   r)   r*   rD   rE   r:   NotImplementedError
isinstancerM   warningswarnFutureWarningr   _selected_objr   r0   lendatetime	timedeltar   anyr@   _deltasr.   r/   r6   _comr1   onesrN   r=   )selfrN   rB   r(   r)   r*   rC   rD   rE   rF   r:   rG   rJ   	__class__r4   r5   rU   N  sn    
	
 "z ExponentialMovingWindow.__init__r9   rW   None)startendnum_valsr+   c                 C  s   d S Nr4   )re   ri   rj   rk   r4   r4   r5   _check_window_bounds  s    z,ExponentialMovingWindow._check_window_boundsr   r+   c                 C  s   t  S )z[
        Return an indexer class that will compute the window start and end bounds
        )r   re   r4   r4   r5   _get_window_indexer  s    z+ExponentialMovingWindow._get_window_indexernumbac                 C  s8   t | j| j| j| j| j| j| j| j| j	| j
||| jdS )a  
        Return an ``OnlineExponentialMovingWindow`` object to calculate
        exponentially moving window aggregations in an online method.

        .. versionadded:: 1.3.0

        Parameters
        ----------
        engine: str, default ``'numba'``
            Execution engine to calculate online aggregations.
            Applies to all supported aggregation methods.

        engine_kwargs : dict, default None
            Applies to all supported aggregation methods.

            * For ``'numba'`` engine, the engine can accept ``nopython``, ``nogil``
              and ``parallel`` dictionary keys. The values must either be ``True`` or
              ``False``. The default ``engine_kwargs`` for the ``'numba'`` engine is
              ``{{'nopython': True, 'nogil': False, 'parallel': False}}`` and will be
              applied to the function

        Returns
        -------
        OnlineExponentialMovingWindow
        )rN   rB   r(   r)   r*   rC   rD   rE   rF   r:   engineengine_kwargsrJ   )OnlineExponentialMovingWindowrN   rB   r(   r)   r*   rC   rD   rE   rF   r:   Z
_selection)re   rr   rs   r4   r4   r5   online  s    zExponentialMovingWindow.online	aggregatezV
        See Also
        --------
        pandas.DataFrame.rolling.aggregate
        a  
        Examples
        --------
        >>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6], "C": [7, 8, 9]})
        >>> df
           A  B  C
        0  1  4  7
        1  2  5  8
        2  3  6  9

        >>> df.ewm(alpha=0.5).mean()
                  A         B         C
        0  1.000000  4.000000  7.000000
        1  1.666667  4.666667  7.666667
        2  2.428571  5.428571  8.428571
        zSeries/Dataframe )Zsee_alsoZexamplesklassrF   c                   s   t  j|f||S rl   )rT   rv   re   funcargskwargsrf   r4   r5   rv     s    z!ExponentialMovingWindow.aggregateZ
ParametersZReturnszSee AlsoZNotes
r,   ewmz"(exponential weighted moment) meanmean)Zwindow_methodZaggregation_descriptionZ
agg_method)rr   rs   c          
      O  s   t |r^| jdkr$t}dd df}nt}dd df}||| j| j| j| jdd}| j||d	S |d
kr|d k	rvt	dt
d|| | jd krd n| j}ttj| j| j| j|dd}	| |	S t	dd S )NrH   c                 S  s   | S rl   r4   xr4   r4   r5   <lambda>      z.ExponentialMovingWindow.mean.<locals>.<lambda>Zewm_meanc                 S  s   | S rl   r4   r   r4   r4   r5   r     r   Zewm_mean_tableTrs   rB   rD   rE   deltas	normalizenumba_cache_keycythonN+cython engine does not accept engine_kwargsr   rB   rD   rE   r   r   )engine must be either 'numba' or 'cython')r   rG   r   r    rc   rD   rE   rb   _applyr0   nvvalidate_window_funcr:   r   window_aggregationsr~   
re   rr   rs   r{   r|   rz   r   Zewm_funcr   window_funcr4   r4   r5   r     sB    

zExponentialMovingWindow.meanz!(exponential weighted moment) sumsumc          
      O  s   | j stdt|rl| jdkr2t}dd df}nt}dd df}||| j| j | j| jdd	}| j	||d
S |dkr|d k	rt
dtd|| | jd krd n| j}ttj| j| j | j|dd}	| 	|	S t
dd S )Nz(sum is not implemented with adjust=FalserH   c                 S  s   | S rl   r4   r   r4   r4   r5   r   J  r   z-ExponentialMovingWindow.sum.<locals>.<lambda>Zewm_sumc                 S  s   | S rl   r4   r   r4   r4   r5   r   M  r   Zewm_sum_tableFr   r   r   r   r   r   r   )rD   rX   r   rG   r   r    rc   rE   rb   r   r0   r   r   r:   r   r   r~   r   r4   r4   r5   r   4  sF    

zExponentialMovingWindow.sumzc
        bias : bool, default False
            Use a standard estimation bias correction.
        z0(exponential weighted moment) standard deviationstdbiasc                 O  s&   t d|| t| jf d|i|S )Nr   r   )r   r   r   varre   r   r{   r|   r4   r4   r5   r   l  s    zExponentialMovingWindow.stdc                 O  s$   t jdtt d | j|f||S )NzGvol is deprecated will be removed in a future version. Use std instead.rR   )rZ   r[   r\   r   r   r   r4   r4   r5   vol  s    zExponentialMovingWindow.volz&(exponential weighted moment) variancer   c                   sB   t d|| tj}t|| j| j| j|d  fdd}| |S )Nr   )rB   rD   rE   r   c                   s    | |||| S rl   r4   )valuesbeginrj   rC   Zwfuncr4   r5   var_func  s    z-ExponentialMovingWindow.var.<locals>.var_func)	r   r   r   ewmcovr   rc   rD   rE   r   )re   r   r{   r|   r   r   r4   r   r5   r     s    zExponentialMovingWindow.vara  
        other : Series or DataFrame , optional
            If not supplied then will default to self and produce pairwise
            output.
        pairwise : bool, default None
            If False then only matching columns between self and other will be
            used and the output will be a DataFrame.
            If True then all pairwise combinations will be calculated and the
            output will be a MultiIndex DataFrame in the case of DataFrame
            inputs. In the case of missing elements, only complete pairwise
            observations will be used.
        bias : bool, default False
            Use a standard estimation bias correction.
        z/(exponential weighted moment) sample covariancecovDataFrame | Series | Nonebool | Noneotherpairwiser   c                   s.   ddl m   fdd}j|||S )Nr   r
   c           	        s    | } |} }jd k	r,jn|j}|jt||jjd\}}t	|||j|j
jj	} || j| jdS )NZ
num_valuesrC   rP   rQ   indexname)_prep_valuesrp   rC   window_sizeget_window_boundsr^   rP   rQ   r   r   rc   rD   rE   r   r   )	r   yx_arrayy_arraywindow_indexerrC   ri   rj   resultr
   r   re   r4   r5   cov_func  s2    


z-ExponentialMovingWindow.cov.<locals>.cov_funcpandasr
   Z_apply_pairwiser]   )re   r   r   r   r|   r   r4   r   r5   r     s    #zExponentialMovingWindow.covaL  
        other : Series or DataFrame, optional
            If not supplied then will default to self and produce pairwise
            output.
        pairwise : bool, default None
            If False then only matching columns between self and other will be
            used and the output will be a DataFrame.
            If True then all pairwise combinations will be calculated and the
            output will be a MultiIndex DataFrame in the case of DataFrame
            inputs. In the case of missing elements, only complete pairwise
            observations will be used.
        z0(exponential weighted moment) sample correlationcorrr   r   c                   s,   ddl m   fdd}j|||S )Nr   r   c           
   	     s    | } |} }jd k	r,jn|j|jt|jjd\  fdd}tj	dd4 |||}|||}|||}|t
||  }	W 5 Q R X |	| j| jdS )Nr   c                   s    t |  |jjjd	S )NT)r   r   rc   rD   rE   )XY)rj   rC   re   ri   r4   r5   _cov(  s    z<ExponentialMovingWindow.corr.<locals>.cov_func.<locals>._covignore)allr   )r   rp   rC   r   r   r^   rP   rQ   r1   Zerrstater   r   r   )
r   r   r   r   r   r   r   Zx_varZy_varr   r
   re   )rj   rC   ri   r5   r     s(    





z.ExponentialMovingWindow.corr.<locals>.cov_funcr   )re   r   r   r|   r   r4   r   r5   r     s     $zExponentialMovingWindow.corr)
NNNNr   TFr   NrH   )rq   N)F)F)F)NNF)NN)__name__
__module____qualname____doc___attributesrU   rm   rp   ru   r   r   r   rv   Zaggr   r   r   r   r   r   r   r   replacer   r   r   r   r   r   r   __classcell__r4   r4   rf   r5   rA      sH   C          *V
*&(  
  
  
   )  
  rA   c                      s@   e Zd ZdZejej Zdd fdd
Zdddd	Z  Z	S )
ExponentialMovingWindowGroupbyzF
    Provide an exponential moving window groupby implementation.
    N)_grouperc                  s\   t  j|f|d|i| |jsX| jd k	rXtt| jj	 }t
| j|| j| _d S )Nr   )rT   rU   emptyr:   r1   concatenatelistr   indicesr   r@   Ztaker)   rb   )re   rN   r   r{   r|   Zgroupby_orderrf   r4   r5   rU   F  s    
z'ExponentialMovingWindowGroupby.__init__r   rn   c                 C  s   t | jjtd}|S )z
        Return an indexer class that will compute the window start and end bounds

        Returns
        -------
        GroupbyIndexer
        )Zgroupby_indicesr   )r   r   r   r   )re   r   r4   r4   r5   rp   Q  s
    z2ExponentialMovingWindowGroupby._get_window_indexer)
r   r   r   r   rA   r   r$   rU   rp   r   r4   r4   rf   r5   r   ?  s   r   c                      s   e Zd Zd'dddddd	dd
ddddddd fddZdd Zdd Zd(ddddZd)dddddZd*ddddd d!Zd+ddd"d#Z	ddd$d%d&Z
  ZS ),rt   Nr   TFrq   rI   r   r%   r8   rK   rL   r   r7   rM   zdict[str, bool] | None)rN   rB   r(   r)   r*   rC   rD   rE   rF   r:   rr   rs   c                  sp   |
d k	rt dt j|||||||||	|
|d t| j| j| j| j|j| _	t
|rd|| _|| _ntdd S )Nz0times is not implemented with online operations.)rN   rB   r(   r)   r*   rC   rD   rE   rF   r:   rJ   z$'numba' is the only supported engine)rX   rT   rU   r!   rc   rD   rE   rF   shape_meanr   rr   rs   r0   )re   rN   rB   r(   r)   r*   rC   rD   rE   rF   r:   rr   rs   rJ   rf   r4   r5   rU   a  s8        z&OnlineExponentialMovingWindow.__init__c                 C  s   | j   dS )z=
        Reset the state captured by `update` calls.
        N)r   resetro   r4   r4   r5   r     s    z#OnlineExponentialMovingWindow.resetc                 O  s   t S rl   rX   ry   r4   r4   r5   rv     s    z'OnlineExponentialMovingWindow.aggregater   c                 O  s   t S rl   r   r   r4   r4   r5   r     s    z!OnlineExponentialMovingWindow.stdr   r   r   c                 K  s   t S rl   r   )re   r   r   r|   r4   r4   r5   r     s    z"OnlineExponentialMovingWindow.corrr   c                 K  s   t S rl   r   )re   r   r   r   r|   r4   r4   r5   r     s    z!OnlineExponentialMovingWindow.covc                 O  s   t S rl   r   r   r4   r4   r5   r     s    z!OnlineExponentialMovingWindow.var)updateupdate_timesc                O  sl  i }| j jdkrdnd}|dk	r*tdn(tjt| j j| jd  d dtjd}|dk	r| j	j
dkrntd	d}|j|d
< |r| j	j
tjddf }	|j|d< n| j	j
}	|j|d< t|	| f}
n@d}| j j|d
< |r| j j|d< n| j j|d< | j tj }
t| j}| j	|r"|
n|
ddtjf || j|}|sL| }||d }| j j|f|}|S )a[  
        Calculate an online exponentially weighted mean.

        Parameters
        ----------
        update: DataFrame or Series, default None
            New values to continue calculating the
            exponentially weighted mean from the last values and weights.
            Values should be float64 dtype.

            ``update`` needs to be ``None`` the first time the
            exponentially weighted mean is calculated.

        update_times: Series or 1-D np.ndarray, default None
            New times to continue calculating the
            exponentially weighted mean from the last values and weights.
            If ``None``, values are assumed to be evenly spaced
            in time.
            This feature is currently unsupported.

        Returns
        -------
        DataFrame or Series

        Examples
        --------
        >>> df = pd.DataFrame({"a": range(5), "b": range(5, 10)})
        >>> online_ewm = df.head(2).ewm(0.5).online()
        >>> online_ewm.mean()
              a     b
        0  0.00  5.00
        1  0.75  5.75
        >>> online_ewm.mean(update=df.tail(3))
                  a         b
        2  1.615385  6.615385
        3  2.550000  7.550000
        4  3.520661  8.520661
        >>> online_ewm.reset()
        >>> online_ewm.mean()
              a     b
        0  0.00  5.00
        1  0.75  5.75
        r-   TFNz update_times is not implemented.r,   r   r;   z;Must call mean with update=None first before passing updater   columnsr   )r]   ndimrX   r1   rd   rV   r   rF   r=   r   Zlast_ewmr0   r   Znewaxisr   r   r   Zto_numpyZastyper"   rs   Zrun_ewmrC   ZsqueezeZ_constructor)re   r   r   r{   r|   Zresult_kwargsZis_frameZupdate_deltasZresult_from
last_valueZnp_arrayZ	ewma_funcr   r4   r4   r5   r     sN    ,
 


z"OnlineExponentialMovingWindow.mean)NNNNr   TFr   Nrq   N)F)NN)NNF)F)r   r   r   rU   r   rv   r   r   r   r   r   r   r4   r4   rf   r5   rt   `  s4              ,+  
   	rt   )I
__future__r   r_   	functoolsr   textwrapr   typingr   rZ   numpyr1   Zpandas._libs.tslibsr   Z pandas._libs.window.aggregationsZ_libsZwindowZaggregationsr   Zpandas._typingr   r   r   r	   r
   Zpandas.core.genericr   Zpandas.compat.numpyr   r   Zpandas.util._decoratorsr   Zpandas.util._exceptionsr   Zpandas.core.dtypes.commonr   Zpandas.core.dtypes.missingr   Zpandas.core.commoncorer.   Zpandas.core.indexers.objectsr   r   r   Zpandas.core.util.numba_r   Zpandas.core.window.commonr   Zpandas.core.window.docr   r   r   r   r   r   r   r   r   Zpandas.core.window.numba_r   r    Zpandas.core.window.onliner!   r"   Zpandas.core.window.rollingr#   r$   r6   r@   rA   r   rt   r4   r4   r4   r5   <module>   sF   ,!      E!